

Welcome to the aop package’s documentation!

aop is a Python package for
amateur astronomical observation logs.

Note

This project is under active development.

Are you an amateur astronomer or astrophotographer who has some ambitions to document
their observations in a clean, meaningful way? Maybe you are currently working on a
small, home-made research project or maybe you are just struggling to remember the
order of all the calibration frames you took last night. Either way, the aop package
is for you! It provides a clear and straightforward way for the logging of amateur
observations of the night sky. However, it only provides the means to do so, as it is
meant to be implemented by a front-end application. Theoretically, you could use any app
that is capable of implementing this package. We recommend the use of Amélie Hohe’s
Gala[#1] to improve your observation logging
quality. Focus on the hobby you enjoy, and aop and Gala will do the logging for you.

On this page, you can learn everything about how to use aop. Look in the menu for
an installation guide, code examples, a tutorial walking you through every function,
and an extensive API reference that has you covered in any technical questions that might
arise. Also be sure to check out the search function and the index function if you’re
searching for something specific!

aop has its documentation hosted on ReadTheDocs.

	Installation
	Linux or MacOS

	Windows

	other operating systems

	Examples

	Tutorials
	Getting started

	Our first Session

	Index

	API Reference
	aop
	Submodules
	aop.aop
	Module Contents
	Classes

	Functions
	current_jd()

	generate_observation_id()

	create_entry_id()

	Session
	Session.filepath

	Session.conditionDescription

	Session.temp

	Session.pressure

	Session.humidity

	Session.__repr__()

	Session.start()

	Session.__write_to_aop()

	Session.__write_to_aol()

	Session.interrupt()

	Session.resume()

	Session.abort()

	Session.end()

	Session.comment()

	Session.issue()

	Session.point_to_name()

	Session.point_to_coords()

	Session.take_frame()

	Session.condition_report()

	Session.report_variable_star_observation()

	parse_session()

	aop.tools
	Module Contents
	AolFileAlreadyExistsError

	AolNotFoundError

	AopFileAlreadyExistsError

	InvalidTimeStringError

	SessionIDDoesntExistOnFilepathError

	SessionStateError
	SessionStateError.__str__()

	NotInterruptableError

	NotResumableError

	NotAbortableError

	NotEndableError

	AlreadyInterruptedError

	NotInterruptedError

	SessionNotStartedError
	SessionNotStartedError.__repr__()

Footnotes

[#1]
https://ninatolfersheimer.github.io/gala

Installation

To use aop, you first have to install it. Since it is a Python package, you
obviously have to have Python installed. Get it from the official website[#1] if you don’t have it installed already.
You will also need the pip tool, but it usually ships with the Python
interpreter available over the link above (if you for some reason don’t have it,
check with the pip documentation[#2]
for help).

After you have Python and pip installed, we can shift our attention towards aop. Always
install it from source using pip. First download the source code from
GitHub[#3], which will in all likelihood result in a
.zip-archive called something along the lines of aop-master you need to unpack using your favourite
zipping tool.

The next step involves a little time spent in a command-line or terminal, so if you’ve
never done anything like that, no worry, I’ll walk you through. The process is dependent
on your operating system, so please go to the specific sub-section below.

Linux or MacOS

Suppose you have stored the contents of the GitHub repository to
/home/amelie/Downloads/aop. Now open your terminal window and navigate to the
folder you stored the source code in. The terminal prompt should start out in your home
directory, so if you fire it up it should look something like this:

amelie@ameliescomputer:~$

Tip

The ~ symbol refers to your home directory, so /home/amelie/ in our example.

Now navigate to the source code directory using the following command:

amelie@ameliescomputer:~$ cd Downloads/aop

The prompt now changes to

amelie@ameliescomputer:~/Downloads/aop$

Using the ls command, we can inspect the contents of the directory. If you are in
the correct directory, your output should look something like this:

amelie@ameliescomputer:~/Downloads/aop$ ls
aop LICENSE README.md requirements.txt setup.py

If it doesn’t, search around a bit. Downloading from GitHub sometimes adds extra
directories around the ones containing the actual code. You can enter those using
the same cd <name of directory> command as above.

Tip

If you want to get out of a directory, just type cd .. - the two dots
always refer to the parent directory of the one you’re currently in, while a
single dot . refers to the directory you’re currently in.

After you have successfully found the correct source folder, whose ls output looks
like described above, it’s finally time to install the aop package to your system.
To do so, simply type in the following command (without the dollar sign):

$ pip install -r requirements.txt .

Attention

Don’t forget the extra dot after requirements.txt! While it seems minor, it is
actually one of the most important parts of this command. As we mentioned earlier,
a single dot like this refers to the current directory, so
/home/amelie/Downloads/aop in our case. This tells pip to interpret whatever it
encounters in the current directory as the package we want to install. Without the
dot it would be completely clueless!

You should see a bunch of lines thrown at you by pip, but as long as the last line says
something like Successfully installed aop-2.0, you’re golden.

Congratulations! You’ve now successfully installed the aop Python package to your
computer. You can verify that it worked by trying to import it to a Python file.
The most convenient way is to enter Python interactive mode by typing python3 into
your terminal prompt. You should now be seeing something like this ‘>>>’ replacing
your usual amelie@ameliescomputer:~$ prompt. Now type:

>>> import aop

If there is no reaction and a new prompt (>>>) appears, that means it worked! You
could even type help(aop) to receive more info about the package, etc.

Windows

The general process is pretty much the same as for UNIX-like systems (Linux and macOS),
only the commands we use slightly differ. That’s why I’m not going to describe the general
installation process in great detail here again.

The terminal in Windows is called command line and is somewhat hidden, unfortunately.
If you do not know already how to find it, enter the start menu (the little Windows icon to
the left of your task bar) and search for cmd.exe. Open that application and you are in
the Windows command line.

Similarly to Linux, the command prompt will likely start in your home directory. We will
again assume that you have downloaded the aop package source code from GitHub and extracted
it to C:\Users\Amelie\Downloads\. The command prompt starts like this:

C:\Users\Amelie>

You can navigate to the aop folder using the same cd command as on Linux.

C:\Users\Amelie> cd Downloads\aop

C:\Users\Amelie\Downloads\aop>

Now again, check that you are in fact in the correct directory! This time, however,
you have to use a different command. The appropriate command for listing a folder’s
content on Windows is called dir, and it’s expected output looks like this (whatever
information is unnecessary is substituted for ‘X’):

C:\Users\Amelie\Downloads\aop> dir
 Volume XXX
 Volume Serial Number is XXXX-XXXX

 Directory of C:\Users\Amelie\Downloads\aop
XX.XX.XXX XX:XX <DIR> .
XX.XX.XXX XX:XX <DIR> ..
XX.XX.XXX XX:XX <DIR> aop
XX.XX.XXX XX:XX X.XXX LICENSE
XX.XX.XXX XX:XX X.XXX README.md
XX.XX.XXX XX:XX XX requirements.txt
XX.XX.XXX XX:XX XXX setup.py
 4 File(s), X.XXX bytes
 3 Dir(s), XXX.XXX.XXX.XXX bytes free

Like previously, move around your folders until you are in the correct one, whose
dir output looks like above (to move up, use cd .. again). Then execute

pip install -r requirements.txt .

Attention

Again: Mind the dot!

to install the package. You can verify it’s installation by typing python to enter
interactive mode, type

>>> import aop

and if it just prints the next ‘>>>’, aop is installed on your system!

other operating systems

Unfortunately, I cannot provide you with a step-by-step tutorial here. Try searching
the web for help on how to install Python packages from source in your specific OS.

Footnotes

[#1]
https://www.python.org/download/

[#2]
https://pip.pypa.io/en/stable/installation/

[#3]
https://github.com/NinaTolfersheimer/aop

Examples

Soon, there will be some code examples here.

Footnotes

Tutorials

Note

This page provides a step-by-step explanation of each function of aop. If you’re
looking for some quick references, go to the Examples page instead!

Think you could use aop but are not sure about exactly how to use it? Confused by all
the super-technical API stuff? This page is here to help! In the following paragraphs,
we will tackle the functionality of the aop package bit-by-bit in small, easy to
understand steps. All right, let’s get going!

Attention

Writing tutorials takes some time, so this page will not always be up to date.
Especially when new features were added recently, there may not be a tutorial on
them right away.

Note

These tutorials work with version 1.1.

Getting started

First, a few quick words on how this whole thing’s gonna work. The Python programming
language, that aop is written for, has a structure known as classes.
The concept is simple: Every observing session follows some basic rules, the same
parameters could be relevant and there’s only so much you can do during a session.

That’s why at the core of the aop package, there’s a class simply called aop.aop.Session.
Everything to do with aop requires you to work with that class (or, to be super-precise,
instances of that class).

But before we dive too deep into the technical stuff already, let’s first get a few
conventions straight: Since aop is meant to be implemented front-end and hence has no
real front-end interface, working with the package as is requires us to write some code.
We could do this in a Python script, or in the Python interactive console. We could even
use something more sophisticated like a Jupyter notebook or something. You can really
use whatever you see fit, but for the purpose of this tutorial, we will assume that you
use the Python console. We will therefore print ‘>>>’ in front of every command, as is
convention for the console. If you were using a Jupyter notebook, for example, this
would be equivalent to In[1] and so on. Enter the console by typing python in
a command-line interface or terminal (on UNIX-like systems, you sometimes have to type
python3 instead). See the Installation guide for help on how to get to the command-
line.

All right, with all that out of the way, let’s finally get our hands on some code!
Of course, if you want to use aop, you first have to import it using the import
Statement. Since the aop package contains two modules, aop.aop (providing the main
functionality) and aop.tools, providing largely custom exceptions, we need to
pronounce our import statement like so:

>>> from aop.aop import *
>>> from aop.tools import *

The asterisk symbol * indicates that we want to import all the content of those two
modules. We can verify our import worked by quickly checking the current Julian Date:

>>> current_jd()
2460098.980502531

Hooray, it worked! Now that we know how to import the package into our code, we can move
on to the next step.

Our first Session

In this section, we will launch our first observing session using aop! We will assume that you have
successfully imported the aop package as described above. If you have, creating a session is a really
straightforward process. Simply type

>>> my_session = Session(filepath="/home/amelie/astronomy_logs/")

where you replace the filepath argument with whatever location you want your logs to be stored to.

Attention

If you are on Windows and want to use the Windows-specific backslash (\) notation
(e.g. C:\Users\Amelie\astronomy_logs\) you either have to put a little r in front of the first
quotation mark or double each backslash. This is because Python uses the backslash as a special
character and would therefore not realize this was a file path. You should, however, be able
to use regular slashes for Windows paths as well.

Congratulations! You’ve just created your first instance of aop’s aop.aop.Session class! That
is what the my_session object you’ve just instantiated is. You can now use all the methods of the
Session class on that object.

But before we do that, we’ll dive a bit deeper into the possibilities when setting up a new session.
As you’ve seen, aop requires you to give it a filepath argument to know where to store its stuff.
Since this argument is required, you could technically also remove the “filepath=” part, so long as
it remains the first argument.

>>> my_session = Session("/home/amelie/astronomy_logs/")

The Session constructor method, that does all the heavy lifting for us here, also excepts a wide range
of other arguments, however. These are optional, so we need to state them by name. Providing information
on the observer and the location would look like this, for example:

>>> my_session = Session(filepath="/home/amelie/astronomy_logs/",
 observer="Jane Doe",
 locationDescription="12 Example Road")

There are many more options here, check the documentation of the aop.aop.Session class for
reference. aop does not really do anything with that information, other than write it to the log,
so it’s your call what if any you want to report, although this is mostly very basic information that
shouldn’t really be missing either.

The door is now wide open, but before we can do anything else, there is just one small step we need to take:
We need to start the session first. It might seem counterintuitive that an aop session does not start
upon creation, but this has one practical reason: Doing it like this, you can prepare your Session
object in advance, and start the session whenever you’re ready, which some people might find useful.
Keep in mind, after all, that the aop package is really not meant to be used in an interactive shell
like we do here, but it is meant to be implemented by an app that provides a proper front-end interface
and that could perhaps do something useful with that possibility.

Nonetheless, starting the session is just this simple command away:

>>> my_session.start()

And that’s it! The start() method works all by itself, no arguments required. You can provide it with
the time argument, as all Session methods, but that’s a story for another day that is really not
necessary for beginners.

aop should also now have logged it’s first entry. To check it out, navigate to the file path you provided
aop with when creating the my_session object in the beginning. You should see a new directory there with
a somewhat cryptic name that starts with the current date in year-month-day format. This is
the observation ID, that makes your specific observation unique. It consists of the date and time it
was created, separated by hyphens, and then ten random characters and numbers, that provide another
level of uniqueness. Move into that directory and you should see two files of the same name, but with
different file extensions. There is one with extension .aol that we’re going to ignore for now.
The real stuff happens inside the .aop file, which you can open with any text editor (though
high-level word processing applications such as LibreOffice Writer or Microsoft Word are not ideal
since they would likely mess up the layout - please use something along the lines of NotePad, which should
be built into all modern operating systems in some capacity, though it may be named differently).

If you go ahead and do so, you’ll firstly see a bunch of meta-data that you provided above. But then,
in a new paragraph, you should now see a line that starts with some gibberish in brackets, then a very
large number around 2.5 million, and finally the message SEEV SESSION observation id STARTED. That
means we were successful!

(20231102143452235660-73a5b82e600746e78d830499ed9ee5) 2460251.1075490238 -> SEEV SESSION 2023-11-02-14-34-52-3bb50f5e32 STARTED

A few more detailed notes on the contents of that line: The first part, in the brackets, is the so-called
entry ID, that makes every proper entry completely unique, even across observations. It consists of
the date and precise time it was created, all smashed together before the hyphen in the middle, and then
30 characters and numbers that are completely random and ensure that your entry ID is completely unique.
The point of creating a log is to be able to precisely reference it in the future, after all.

The large number that follows the entry ID is the so-called Julian Date (JD), a system of keeping
time that is often used in astronomy, since it is independent of time zones, daylight saving hours,
calendar conventions, etc. It instead relies on counting the days that have passed since a largely
arbitrary, yet very well defined point in the distant past. If you’re curious, try to calculate which
date it was (or look it up, since this stuff can get really complicated). The counting of Julian Date
present here has ten decimal places, corresponding to an accuracy of a 10 billionth of a day
(0.00864 milliseconds or 8.64 microseconds). That is limited by the accuracy of your device’s clock,
however.

After the arrow (->), that is just a visual aid to separate the technical stuff from the actual
log, there is only one mystery left: What does SEEV mean? This is what is known to aop as an
op code, short for operation code, and it encrypts what type of action is recorded here. Starting
the session falls into the category of “session events” (hence the abbreviation SEEV). Everything
that comes after the op code is referred to as the op code’s argument and carries the additional
information necessary for understanding what has been going on - in this case, the information that
a session was started, along with it’s specific observation ID (although this is technically not
necessary, since the observation ID is also recorded at the top of the file with the other
session parameters under the short handle “obsID”).

You’re now familiar with setting up an aop session, starting it, and you also now where to find the
results and how to read them. That’s a great start! In the next chapter, we will explore the other
session events that are available to you.

Footnotes

Index

 _
 | A
 | C
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T

_

 	
 	__repr__() (aop.aop.Session method)

 	(aop.tools.SessionNotStartedError method)

 	
 	__str__() (aop.tools.SessionStateError method)

 	__write_to_aol() (aop.aop.Session static method)

 	__write_to_aop() (aop.aop.Session static method)

A

 	
 	abort() (aop.aop.Session method)

 	AlreadyInterruptedError

 	AolFileAlreadyExistsError

 	AolNotFoundError

 	
 aop

 	module

 	
 	
 aop.aop

 	module

 	
 aop.tools

 	module

 	AopFileAlreadyExistsError

C

 	
 	comment() (aop.aop.Session method)

 	condition_report() (aop.aop.Session method)

 	
 	conditionDescription (aop.aop.Session attribute)

 	create_entry_id() (in module aop.aop)

 	current_jd() (in module aop.aop)

E

 	
 	end() (aop.aop.Session method)

F

 	
 	filepath (aop.aop.Session attribute)

G

 	
 	generate_observation_id() (in module aop.aop)

H

 	
 	humidity (aop.aop.Session attribute)

I

 	
 	interrupt() (aop.aop.Session method)

 	
 	InvalidTimeStringError

 	issue() (aop.aop.Session method)

M

 	
 	
 module

 	aop

 	aop.aop

 	aop.tools

N

 	
 	NotAbortableError

 	NotEndableError

 	
 	NotInterruptableError

 	NotInterruptedError

 	NotResumableError

P

 	
 	parse_session() (in module aop.aop)

 	point_to_coords() (aop.aop.Session method)

 	
 	point_to_name() (aop.aop.Session method)

 	pressure (aop.aop.Session attribute)

R

 	
 	report_variable_star_observation() (aop.aop.Session method)

 	
 	resume() (aop.aop.Session method)

S

 	
 	Session (class in aop.aop)

 	SessionIDDoesntExistOnFilepathError

 	
 	SessionNotStartedError

 	SessionStateError

 	start() (aop.aop.Session method)

T

 	
 	take_frame() (aop.aop.Session method)

 	
 	temp (aop.aop.Session attribute)

API Reference

This page contains auto-generated API reference documentation [1].

	aop
	aop.aop

	aop.tools

[1]
Created with sphinx-autoapi[#1]

[#1]
https://github.com/readthedocs/sphinx-autoapi

aop

	Author:

	Amélie Solveigh Hohe

	Contact:

	nina.tolfersheimer@posteo.de

	License:

	MIT

	Version:

	1.0

About: This package provides the background functionality for an implementation of
the Astronomical Observation Protocol standard v1.0 (aop). It fully implements the
standard, but is meant to be implemented by a front-end app.

Third-party dependencies are listed in requirements.txt.

Submodules

	aop.aop

	aop.tools

Footnotes

aop.aop

	Author:

	Amélie Solveigh Hohe

	Contact:

	nina.tolfersheimer@posteo.de

This module contains the main classes and functions of the aop package.

Module Contents

Classes

	Session

	A class representing an astronomical observing session.

Functions

	current_jd(→ numpy.float64)

	Returns the Julian Date for the current UTC or a custom datetime.

	generate_observation_id(→ str)

	This function generates a unique observation ID.

	create_entry_id(→ str)

	Creates a unique identifier for each and every entry in an .aop protocol.

	parse_session(→ Session)

	This function parses a session from memory to a new Session object.

	
aop.aop.current_jd(time: str = 'current') → numpy.float64

	Returns the Julian Date for the current UTC or a custom datetime.

It makes use of astropy’s Time class to represent the datetime given as
a Julian Date.

	Parameters:

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want to be converted
to a Julian Date. If time is “current”, the current UTC
datetime will be used, defaults to “current”.

	Raises:

	
	TypeError – If the time argument is not of type str.

	InvalidTimeStringError – If the time argument is of type str but not interpretable as
representing a time to astropy.time.Time.

	Returns:

	The Julian Date corresponding to the datetime provided.

	Return type:

	numpy.float64

	
aop.aop.generate_observation_id(digits: int = 10) → str

	This function generates a unique observation ID.

The ID is generated as such: YYYY-mm-dd-HH-MM-SS-uuuuuuuuuu,
where:

	YYYY: current UTC year

	mm: current UTC month

	dd: current UTC day

	HH: current UTC hour

	MM: current UTC minute

	SS: current UTC second

	uuuuuuuuuu: a digits-long unique identifier (10 digits per default)

	Parameters:

	digits (int, optional) – The number of digits to be used for the unique identifier part of
the observation ID, defaults to 10.

	Returns:

	The generated observation ID.

	Return type:

	str

	
aop.aop.create_entry_id(time: str = 'current', digits: int = 30) → str

	Creates a unique identifier for each and every entry in an .aop protocol.
This identifier is unique even across observations.

	Parameters:

	
	time (str, optional) – If equal to “current”, the current UTC datetime is used for
entry ID creation. You can also pass an ISO 8601 conform string to
time, if the time of the entry is not the current time this method is
called, defaults to “current”.

	digits (int, optional) – The number of characters to use for the unique part of the entry ID, defaults to 30.

	Raises:

	
	TypeError – If time is not a string.

	InvalidTimeStringError – If a string different from “current” is provided as time argument, but
it is not ISO 8601 conform and therefore does not constitute a valid time string.

	Returns:

	The entry ID generated. It follows the syntax YYYYMMDDhhmmssffffff-u,
where:

	YYYY is the specified UTC year,

	MM is the specified UTC month,

	DD is the specified UTC day,

	hh is the specified UTC hour,

	mm is the specified UTC month,

	ss is the specified UTC second,

	ffffff is the specified fraction of a UTC second and

	u represents the specified amount of unique identifier characters.

	Return type:

	str

	
class aop.aop.Session(filepath: str, **kwargs)

	A class representing an astronomical observing session.

The Session class provides several public methods representing different
actions and events that occur throughout an astronomical observation.

	
filepath

	The path where the implementing script wants aop to store its files. This could be a part of the implementing
script’s installation directory, for example.

	
conditionDescription

	A short description of the observing conditions.

	
temp

	The temperature at the observing site in °C.

	
pressure

	The air pressure at the observing site in hPa.

	
humidity

	The air humidity at the observing site in %.

	
__repr__() → str

	A Session object is represented by its attributes.

	Returns:

	A string containing all the instance’s attributes and their values
in line format.

	Return type:

	str

	
start(time: str = 'current') → None

	This method is called to start the observing session.

By not starting the observation when a Session object is created, it is
possible to prepare the Session object pre-observation as well as
parse existing protocols from memory into a new Session object. It
changes the Session’s “state” flag to “running”, as well as generating
an observation ID, setting up a directory for the protocol to live in, and writing
the initial files to that directory.

	Parameters:

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
observation to start. Can also be “current”, in which case the current
UTC datetime will be used, defaults to “current”.

	Raises:

	
	PermissionError – If the user does not have the adequate access rights for reading from or writing to the
.aop file.

	AopFileAlreadyExistsError – If the .aop file the method tries to create already exists.

	AopFileAlreadyExistsError – If the .aopl file the method tries to create for legacy only already exists.

	AolFileAlreadyExistsError – If the .aol file the method tries to create for legacy only already exists.

	
static __write_to_aop(self, opcode: str, argument: str, time: str = 'current') → None

	This pseudo-private method is called to update the .aopl legacy protocol file.

For the syntax, check with the Astronomical Observation Protocol Syntax
Guide.
CAUTION! This method should be considered deprecated and should not be used in any new code!

	Parameters:

	
	opcode (str) – The operation code of the event to be written to protocol, as
described in the AOP Syntax Guide.

	argument (str) – Whatever is to be written to the argument position in the .aopl
protocol entry.

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want to use. Can also be “current”, in which
case the current UTC datetime will be used.
In most cases, however, the calling method will pass its own time
argument on to __write_to_aop(), defaults to “current”.

	Raises:

	PermissionError – If the user does not have the adequate access rights for writing to the .aopl file.

	
static __write_to_aol(self, parameter: str, assigned_value) → None

	This pseudo-private method is used to update the .aol legacy parameter log.

It takes two arguments, the first being the parameter name being updated,
the second one being the value it is assigned.
CAUTION! This method should be considered deprecated and should not be used in any new code!

	Parameters:

	
	parameter (str) – The name of the parameter being updated.

	assigned_value (any) – The value the parameter should be assigned. Typically, this
is a string or boolean.

	Raises:

	
	PermissionError – If the user does not have the adequate access rights for reading from the .aol file.

	PermissionError – If the user does not have the adequate access rights for writing to the .aol file.

	
interrupt(time: str = 'current') → None

	This method interrupts the session.

It sets the Session’s interrupted flag to True and logs that change.

	Parameters:

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
observation to be interrupted at. Can also be “current”, in which case
the current UTC datetime will be used, defaults to “current”.

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	NotInterruptableError – If the session is not currently “running”.

	AlreadyInterruptedError – If the session is already interrupted.

	
resume(time: str = 'current') → None

	This method resumes the session.

It sets the Session’s interrupted flag to False and logs that change.

	Parameters:

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
observation to be resumed at. Can also be “current”, in which case the
current UTC datetime will be used, defaults to “current”.

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	NotResumableError – If the session is not currently “running”.

	NotInterruptedError – If the session is not interrupted.

	
abort(reason: str, time: str = 'current') → None

	This method aborts the session while providing a reason for doing so.

It sets the Session’s state flag to “aborted” and logs that change.

	Parameters:

	
	reason (str) – The reason why this session had to be aborted.

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
observation to be aborted at. Can also be “current”, in which case the
current UTC datetime will be used, defaults to “current”.

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	NotAbortableError – If the session is not currently “running”.

	
end(time: str = 'current') → None

	This method is called to end the observing session.

It sets the Session’s state flag to “ended” and logs that change.

	Parameters:

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
observation to be ended at. Can also be “current”, in which case the
current UTC datetime will be used, defaults to “current”.

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	NotEndableError – If the session is not currently “running”.

	
comment(comment: str, time: str = 'current') → None

	This method adds an observer’s comment to the protocol.

	Parameters:

	
	comment (str) – Whatever you want your comment to read in the protocol.

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
comment to be added at. Can also be “current”, in which case the
current UTC datetime will be used, defaults to “current”.

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	SessionStateError – If the session is not currently “running”.

	
issue(severity: str, message: str, time: str = 'current') → None

	This method is called to report an issue to the protocol.

	There are three severity levels available:
	
	potential

	normal

	major

	Parameters:

	
	severity (str) – An indicator of the issue’s severity. It has to be one of the
following strings:

	”potential”

	”p”

	”normal”

	”n”

	”major”

	”m”.

	message (str) – A short description of the issue that is logged as well.

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
issue to be reported at. Can also be “current”, in which case the
current UTC datetime will be used, defaults to “current”.

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	SessionStateError – If the session is not currently “running”.

	ValueError – If an improper value is passed to the ‘severity’ argument, that is
anything different from:

	”potential”

	”p”

	”normal”

	”n”

	”major”

	”m”.

	
point_to_name(targets: list, time: str = 'current') → None

	This method indicates the pointing to one or more target(s) identified by name.

It can handle multiple targets at once, each will be logged in its own sub-tag of the
‘point’ tag.

	Parameters:

	
	targets (list[any]) – A list object that contains whatever objects represent the targets,
most likely strings, but it could be any other object.

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
pointing to be reported at. Can also be “current”, in which case the
current UTC datetime will be used, defaults to “current”.

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	SessionStateError – If the session is not currently “running”.

	TypeError – If the targets argument is not of type list.

	
point_to_coords(ra: float, dec: float, time: str = 'current') → None

	This method indicates the pointing to ICRS coordinates.

Unlike the point_to_name() method, this method can only handle one set
of coordinates each time, ideally representing the middle of the field of view.
Provide decimal degrees for declination and decimal hours for right ascension.

	Parameters:

	
	ra (float) – Right ascension in the ICRS coordinate framework.

	dec (float) – Declination in the ICRS coordinate framework.

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
pointing to be reported at. Can also be “current”, in which case the
current UTC datetime will be used, defaults to “current”.

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	SessionStateError – If the session is not currently “running”.

	TypeError – If ‘ra’ is not of type ‘float’.

	TypeError – If ‘dec’ is not of type ‘float’.

	ValueError – If ‘ra’ is not 0.0h <= ‘ra’ < 24.0h.

	ValueError – If ‘dec’ is not -90.0° <= ‘dec’ <= 90.0°.

	
take_frame(n: int, ftype: str, iso: int, expt: float, ap: float, time: str = 'current') → None

	This method reports the taking of one or more frame(s) of the same target and the same camera settings used.

It is centered on using a DSLR/DSLM as detector, since it uses the term ISO and expects
aperture to be provided as a fraction, like it is common for photographic lenses.
You can use a dedicated astronomy camera as well however. Interpret ‘iso’ as Gain and
calculate the aperture fraction of your optics for the ‘ap’ argument.
This method recognizes five distinct frame types:

	science/light frame (sometimes called ‘sub’, too)

	dark frame

	flat frame

	bias frame

	pointing frame

	Parameters:

	
	n (int) – Number of frames of the specified frame type and settings that were
taken of the same target.

	ftype (str) – Type of frame, ftype must not be anything other than:
* “science frame”
* “science”
* “sf”
* “s”
* “dark frame”
* “dark”
* “df”
* “d”
* “flat frame”
* “flat”
* “ff”
* “f”
* “bias frame”
* “bias”
* “bf”
* “b”
* “pointing frame”
* “pointing”
* “pf”
* “p”.

	iso (int) – ISO or Gain setting that was used for the frame(s).

	ap (float) – The denominator of the aperture setting that was used for the
frame(s). For example, if f/5.6 was used, provide ap=5.6 to the
method.

	expt (float) – Exposure time that was used for the frame(s), given in seconds.

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
frame(s) to be reported at. Can also be “current”, in which case the
current UTC datetime will be used, defaults to “current”.

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	SessionStateError – If the session is not currently “running”.

	TypeError – If one of the parameters is not of the required type:
* n: int
* ftype: str
* expt: float
* ap: float
* iso: int

	ValueError – If an improper value is passed in the ‘ftype’ argument, that is
anything other than:

	”science frame”

	”science”

	”sf”

	”s”

	”dark frame”

	”dark”

	”df”

	”d”

	”flat frame”

	”flat”

	”ff”

	”f”

	”bias frame”

	”bias”

	”bf”

	”b”

	”pointing frame”

	”pointing”

	”pf”

	”p”.

	
condition_report(description: str = None, temp: float = None, pressure: float = None, humidity: float = None, time: str = 'current') → None

	This method reports a condition description or measurement.

Every argument is optional, just pass the values for the arguments you
want to log. Each argument will be processed completely
separately, so a separate log entry will be produced for every
argument you provide. For each type of condition report, a
corresponding flag will be set.

	Parameters:

	
	description (str, optional) – A short description of every relevant element influencing the
overall observing description, but do not provide any measurements,
as these are a Condition Measurement rather than a Condition
Description, defaults to None.

	temp (float, optional) – The measured temperature in °C, defaults to None.

	pressure (float, optional) – The measured air pressure in hPa, defaults to None.

	humidity (float, optional) – The measured air humidity in %, defaults to None.

	time (str, optional) – An ISO 8601 conform string of the UTC datetime you want your
condition update to be reported at. Can also be “current”, in which
case the current UTC datetime will be used, defaults to “current”.

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	SessionStateError – If the session is not currently “running”.

	Returns:

	None

	
report_variable_star_observation(star_id: str, chart_id: str, magnitude: float, comparison_star_1: str, comparison_star_2: str = None, codes: list = None, time: str = 'current') → None

	This method reports a (visual) observation of a variable star.

Alongside your magnitude estimate, the finder chart you used as well as at least one
comparison star and possible comment codes are logged.
This method is very much constructed with reporting your observation to the
American Association of Variable Star Observers (AAVSO) in mind.
Please note, however, that it DOES NOT write an AAVSO Visual File
Format compliant report, as this is a higher task left to the front-end application.

	Parameters:

	
	star_id (str) – An unambiguous identifier of the variable star being observed (e.g. “del Cep”).

	chart_id – The ID of the finder chart in usage. AAVSO charts usually have a box at the upper right-hand

corner containing this information.
:type chart_id: str
:param magnitude: Your magnitude estimate, including the decimal point.
:type magnitude: float
:param comparison_star_1: The label of the first comparison star being used. AAVSO charts leave out the decimal
point here, please do so as well.
:type comparison_star_1: str
:param comparison_star_2: The label of the second comparison star being used, if any.
:type comparison_star_2: str, optional
:param codes: A list of comment codes detailing your observation. Usage of the official AAVSO one-character
comment codes is recommended, but not mandated.
:type codes: list, optional
:param time: An ISO 8601 conform string of the UTC datetime you want your

observation to be reported at. Can also be “current”, in which
case the current UTC datetime will be used, defaults to “current”.

	Returns:

	None

	Raises:

	
	SessionNotStartedError – If the session has not yet been started.

	SessionStateError – If the session is not currently “running”.

	
aop.aop.parse_session(filepath: str, session_id: str) → Session

	This function parses a session from memory to a new Session object.

Provided with the filepath to the general location where the
log files are stored and an observation ID, it reads in the observation
parameters from the session’s log. This information is then used
to create a new Session object, which is returned by the function.

	Parameters:

	
	filepath (str) – The path to the file where you expect the session directory to reside.
This is most likely equivalent to the path passed to the Session class
to create its files in.

	session_id (str) – The observation ID of the session to be parsed.

	Raises:

	
	AolNotFoundError – If there is no .aol legacy file using the specified filepath and observation ID.

	SessionIdDoesntExistOnFilepathError – If the specified observation ID is not in the filepath provided.

	NotADirectoryError – If the specified filepath does not constitute a directory.

	Returns:

	The new Session object parsed from the stored observation parameters.
For all intents and purposes, this object is equivalent to the object
whose parameters were used to parse, and you can use it to continue your
observation session or log just the same. Just be careful not to
run the Session.start() method again, as this would overwrite the
existing protocol instead of continuing it! Due to the ‘started’ flag of
the new Session object most likely being set to True, however, this should
generally not be possible.

	Return type:

	Session

Footnotes

aop.tools

	Author:

	Amélie Solveigh Hohe

	Contact:

	nina.tolfersheimer@posteo.de

This module contains auxiliary classes and functions for the aop package.

Module Contents

	
exception aop.tools.AolFileAlreadyExistsError(filepath: str, session_id: str)

	Bases: Exception

An error raised upon trying to initialize an .aol file that already exists.

	
exception aop.tools.AolNotFoundError(session_id: str)

	Bases: Exception

An error raised upon trying to load an .aol file that doesn’t exist.

	
exception aop.tools.AopFileAlreadyExistsError(filepath: str, session_id: str)

	Bases: Exception

An error raised upon trying to initialize an .aop file that already exists.

	
exception aop.tools.InvalidTimeStringError(invalid_string: str)

	Bases: Exception

An error raised upon providing a string to current_jd’s time argument that is not interpretable as a time.

	
exception aop.tools.SessionIDDoesntExistOnFilepathError(invalid_id: str)

	Bases: Exception

An error raised when a specified session ID could not be found on the provided filepath.

	
exception aop.tools.SessionStateError(event: str, state: str)

	Bases: Exception

An error raised when the current session parameters don’t allow for the requested operation.

	
__str__() → str

	The default custom error message of SessionStateError

	Returns:

	default custom error message

	Return type:

	str

	
exception aop.tools.NotInterruptableError

	Bases: SessionStateError

An error raised when trying to interrupt a session that is not currently ‘running’.

Inherits from SessionStateError, uses “interrupt session” as impossible operation
and “not running” as problematic session state.

	
exception aop.tools.NotResumableError

	Bases: SessionStateError

An error raised when trying to resume a session that is not currently ‘running’.

Inherits from SessionStateError, uses “resume session” as impossible operation
and “not running” as problematic session state.

	
exception aop.tools.NotAbortableError

	Bases: SessionStateError

An error raised when trying to abort a session that is not currently ‘running’.

Inherits from SessionStateError, uses “abort session” as impossible operation
and “not running” as problematic session state.

	
exception aop.tools.NotEndableError

	Bases: SessionStateError

An error raised when trying to end a session that is not currently ‘running’.

Inherits from SessionStateError, uses “end session” as impossible operation
and “not running” as problematic session state.

	
exception aop.tools.AlreadyInterruptedError

	Bases: SessionStateError

An error raised when trying to interrupt a session that is already ‘interrupted’.

Inherits from SessionStateError, uses “interrupt session” as impossible operation
and “interrupted” as problematic session state.

	
exception aop.tools.NotInterruptedError

	Bases: SessionStateError

An error raised when trying to resume a session that is not currently ‘interrupted’.

Inherits from SessionStateError, uses “resume session” as impossible operation
and “not interrupted” as problematic session state.

	
exception aop.tools.SessionNotStartedError(illegal_operation: str)

	Bases: Exception

An error raised when trying to perform a session operation before the session has been started.

	
__repr__() → str

	Custom error message.

	Returns:

	custom error message

	Return type:

	str

Footnotes

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aop	

 	
 	
 aop.aop	

 	
 	
 aop.tools	

Index

 _
 | A
 | C
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T

_

 	
 	__repr__() (aop.aop.Session method)

 	(aop.tools.SessionNotStartedError method)

 	
 	__str__() (aop.tools.SessionStateError method)

 	__write_to_aol() (aop.aop.Session static method)

 	__write_to_aop() (aop.aop.Session static method)

A

 	
 	abort() (aop.aop.Session method)

 	AlreadyInterruptedError

 	AolFileAlreadyExistsError

 	AolNotFoundError

 	
 aop

 	module

 	
 	
 aop.aop

 	module

 	
 aop.tools

 	module

 	AopFileAlreadyExistsError

C

 	
 	comment() (aop.aop.Session method)

 	condition_report() (aop.aop.Session method)

 	
 	conditionDescription (aop.aop.Session attribute)

 	create_entry_id() (in module aop.aop)

 	current_jd() (in module aop.aop)

E

 	
 	end() (aop.aop.Session method)

F

 	
 	filepath (aop.aop.Session attribute)

G

 	
 	generate_observation_id() (in module aop.aop)

H

 	
 	humidity (aop.aop.Session attribute)

I

 	
 	interrupt() (aop.aop.Session method)

 	
 	InvalidTimeStringError

 	issue() (aop.aop.Session method)

M

 	
 	
 module

 	aop

 	aop.aop

 	aop.tools

N

 	
 	NotAbortableError

 	NotEndableError

 	
 	NotInterruptableError

 	NotInterruptedError

 	NotResumableError

P

 	
 	parse_session() (in module aop.aop)

 	point_to_coords() (aop.aop.Session method)

 	
 	point_to_name() (aop.aop.Session method)

 	pressure (aop.aop.Session attribute)

R

 	
 	report_variable_star_observation() (aop.aop.Session method)

 	
 	resume() (aop.aop.Session method)

S

 	
 	Session (class in aop.aop)

 	SessionIDDoesntExistOnFilepathError

 	
 	SessionNotStartedError

 	SessionStateError

 	start() (aop.aop.Session method)

T

 	
 	take_frame() (aop.aop.Session method)

 	
 	temp (aop.aop.Session attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to the aop package’s documentation!

 		
 Installation

 		
 Linux or MacOS

 		
 Windows

 		
 other operating systems

 		
 Examples

 		
 Tutorials

 		
 Getting started

 		
 Our first Session

 		
 Index

 		
 API Reference

 		
 aop

 		
 Submodules

_static/minus.png

_static/plus.png

_static/file.png

